MLL1 is essential for the senescence-associated secretory phenotype.

نویسندگان

  • Brian C Capell
  • Adam M Drake
  • Jiajun Zhu
  • Parisha P Shah
  • Zhixun Dou
  • Jean Dorsey
  • Daniel F Simola
  • Greg Donahue
  • Morgan Sammons
  • Taranjit Singh Rai
  • Christopher Natale
  • Todd W Ridky
  • Peter D Adams
  • Shelley L Berger
چکیده

Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces "SASP-like" inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p16INK4a in cellular senescence

senescence is the activation of the INK4/ARF locus, which is epigenetically regulated and under tight control of the Polycomb group (PcG) Trithorax group (TrxG) proteins [1]. In proliferating cells, the locus is silenced by Polycomb repressive complexes (PRCs), and the chromatin is enriched in H3K27me3 [2]. Upon senescence triggers, PRCs are displaced and the repressive H3K27me3 mark is removed...

متن کامل

HMGB2 holds the key to the senescence-associated secretory phenotype

The senescence-associated secretory phenotype (SASP) is a hallmark of senescence with an important physiological impact, but how it is established is unclear. In this issue, Aird et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201608026) describe how chromatin-bound HMGB2 fine tunes SASP expression by avoiding heterochromatin spreading.

متن کامل

p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.

Cellular senescence suppresses cancer by forcing potentially oncogenic cells into a permanent cell cycle arrest. Senescent cells also secrete growth factors, proteases, and inflammatory cytokines, termed the senescence-associated secretory phenotype (SASP). Much is known about pathways that regulate the senescence growth arrest, but far less is known about pathways that regulate the SASP. We pr...

متن کامل

Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1α–Dependent Senescence-Associated Secretory Phenotype

OBJECTIVE Vascular smooth muscle cells (VSMCs) that become senescent are both present within atherosclerotic plaques and thought to be important to the disease process. However, senescent VSMCs are generally considered to only contribute through inaction, with failure to proliferate resulting in VSMC- and collagen-poor unstable fibrous caps. Whether senescent VSMCs can actively contribute to at...

متن کامل

Epigenetic Basis of Cellular Senescence and Its Implications in Aging

Cellular senescence is a tumor suppressive response that has become recognized as a major contributor of tissue aging. Senescent cells undergo a stable proliferative arrest that protects against neoplastic transformation, but acquire a secretory phenotype that has long-term deleterious effects. Studies are still unraveling the effector mechanisms that underlie these senescence responses with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2016